
Hannes Bennet - hbenn@kth.se
Mattias Larsson - matlar4@kth.se
Fredrik Lundkvist - flundkvi@kth.se

Project report - Path Tracing

Figure 1: Image rendered using the final version of our path tracer. 32768 samples per pixel at a resolution
of 300x300 pixels, and 3 bounces per ray.

Introduction
In computer graphics, ray tracing is a technique to project a three-dimensional scene on to a
two-dimensional plane. In other words: how to render three-dimensional scenes to a computer screen
or image file. In ray tracing, a ray is projected through each pixel in the image plane and as the ray
intersects objects within the scene, various calculations determine the color of the pixels. This process
is performed for each pixel of the image and thus, a ray traced image is created [1].

An alternative to standard ray tracing is path tracing which, while being more computationally
demanding, results in more realistic results than normal ray tracing. One example of this is that
images rendered with path tracing have more realistic global illumination than images rendered with
standard path tracers. It is commonly used within fields where realism is essential, and render times
are not a problem, such as movies or architectural visualization. Examples of renderers that use path
tracing are Disney’s hyperion renderer, and Pixar's renderman.

In this project, we implemented a simple path tracer in C++, using code from a ray tracing lab as our
basis. To do this, we will implement emissive properties for materials, uniform sampling of unit
vectors in a hemisphere, and multi-threaded rendering. The goal is to render images like the image
below:

Figure 2: The Cornell box rendered with path tracing. Image credit: demofox.org

Theory
The rendering equation, presented by James Kajiya, is the foundation of path tracing. It is an equation
to calculate the emitted light from any point in a scene. All physically-based rendering algorithms
render images by solving this equation in one way or another. The full equation is presented below:

This equation is very expensive to calculate, meaning that it is not really feasible to use in practice.
Most physically based renderers use some alternate method to approximate the answer to the
rendering equation. In the case of path tracing, we make use of the concept of monte carlo integration.

The general idea behind monte carlo integration is to randomly sample random values in the result
domain of the function we want to approximate, averaging them out. Given enough samples, the result
will converge towards the correct solution that we want to find. By doing this, we can treat the
rendering equation as a discrete sum instead of a continuous integral, which simplifies the
computations significantly. Thus, monte carlo integration allows us to find a very good approximation
to the rendering equation, much faster than solving the equation in itself. Using these methods, the
light emitted from a point in the scene then becomes:

Where is the number of samples, is the probability distribution function for , and is a
random sample from the integration domain. In our project we perform uniform sampling, which
means that becomes the average of uniformly randomly selected rays, due to the probability
function being the same for every sample. As the number of samples increases, the more realistic the
image will become.

With this knowledge, we can establish the following pseudocode for the path tracing algorithm:

https://blog.demofox.org/2016/09/21/path-tracing-getting-started-with-diffuse-and-emissive/
https://www.codecogs.com/eqnedit.php?latex=L(%5Ctextbf%7Bx%7D%2C%20%5Comega_0%2C%20%5Clambda%2C%20t)%20%3D%20L_e(%5Ctextbf%7Bx%7D%2C%5Comega_0%2C%20%5Clambda%2C%20t)%20%2B%20%5Cint_%7B%5COmega%7D%20f_r(%5Ctextbf%7Bx%7D%2C%5Comega_i%2C%20%5Comega_0%2C%20%5Clambda%2C%20t)L_i(%20%5Ctextbf%7Bx%7D%2C%5Comega_i%2C%20%5Clambda%2C%20t)(%5Comega_i%20%5Ccdot%20%5Ctextbf%7Bn%7D)d%5Comega_i#0
https://www.codecogs.com/eqnedit.php?latex=I#0
https://www.codecogs.com/eqnedit.php?latex=N#0
https://www.codecogs.com/eqnedit.php?latex=pdf#0
https://www.codecogs.com/eqnedit.php?latex=X_i#0
https://www.codecogs.com/eqnedit.php?latex=X_i#0
https://www.codecogs.com/eqnedit.php?latex=I#0

tracePath(ray,depth):

If depth >= max_depth

Return black

findNearestObject(Ray)

If ray did not hit something

Return black

Newray.origin = ray.HitPoint

Newray.direction = randomUnitVectorInHemisphereOf(ray.HitPoint.normal)

Emittance = thinghit.emittance

Probability = 1 / 2 *π

Cos_theta = dot(Newray.direction, ray.hitpoint.normal)

BRDF = thinghit.reflectance / π

Incoming_light = TracePath(newray, depth+1)

Return Emittance + (BRDF * Incoming_light * Cos_theta / p)

Render(image, numSamples)

for pixel in image

for i in numSamples

Ray = generateRay(pixel)

pixel.color += TracePath(Ray, 0)

Pixel.color /= numSamples

Implementation
We began by using code from a completed lab on ray tracing as our starting point, given the
similarities between the two rendering techniques. Using the aforementioned pseudocode, we began
creating the path tracer and we were quick to get some noticeable results.

Sampling functions
The functions for generating random sample vectors are crucial for a path tracer; the better they are,
the better the result becomes. We decided to implement uniform sampling, which is what is used in
the most basic path tracers. To do this, we generate two floating-point numbers between 0 and 1 from
a uniform distribution: , these numbers are then used to create a vector in the unit
hemisphere using the following equations:

Which is just a translation from spherical to cartesian coordinates.

https://www.codecogs.com/eqnedit.php?latex=X1%2C%20X2%20%5Cin%20U(0%2C1)#0
https://www.codecogs.com/eqnedit.php?latex=%20sin(%5Ctheta)%20%3D%20%5Csqrt%7B1%20-%20X_1%5E2%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cphi%20%3D%202%20*%20%5Cpi%20*%20X_2#0
https://www.codecogs.com/eqnedit.php?latex=x%20%3D%20sin(%5Ctheta)%20*%20cos(%5Cphi)#0
https://www.codecogs.com/eqnedit.php?latex=y%20%3D%20X_1#0
https://www.codecogs.com/eqnedit.php?latex=z%20%3D%20sin(%5Ctheta)%20*%20sin(%5Cphi)#0

This unit vector is then transformed to be in the hemisphere of the hit point normal based on the
method found in [3].

Speed
Our naïevly implemented path tracer worked reasonably well, but required considerable amounts of
time to render. A test image of 500 by 500 pixels, with three bounces and 25 samples per pixel took
more than 15 minutes to render. Therefore, the next step in our project was to optimise our code to run
faster. In this section, we will present our optimisations.

Figure 3: The first images from the path tracer. From left to right: 1 sample per pixel, <1 minute render time. 5
samples per pixel, ~4 minutes render time. 10 samples per pixel, >10 minutes render time.

The first thing we did to speed up rendering was making our draw function multi-threaded. Using 10
threads at the same time, and thus rendering 10 pixels in parallel, allowed us to reduce rendering times
by a factor of 2. While multithreading sped up the program significantly, we were not entirely
satisfied. Our next idea was to reduce the time spent testing for ray-triangle intersections. The end
result of this was that we replaced the code that we had taken from the ray tracing lab, and
implemented the Möller-Trumbore intersection algorithm[5] instead. This resulted in further speedups
of the code, with the same test image (500x500px, 3 bounces, 25 samples) only taking 90 seconds to
render, reducing rendering times to 1/10th of what they were before we started optimising our code.

Implementation challenges
We realised quite early that we had misunderstood how the sampling function was supposed to work.
We implemented an emittance vector to each triangle, added a square light source in the ceiling and
rewrote the TracePath function to implement this new functionality. Upon rendering at 100 samples
per pixels the image below was created.

Figure 4: First render created with our altered path tracer. 100 samples per pixel.

We figured that these strange artefacts were caused by the lack of samples per pixel and upon
increasing that value we created the image pictured below. While the image looked much better and
had realistic lighting (the strange artefacts even adding an illusion of texture to the walls), it did not
remind us of the noise which is commonly associated with path tracing.

Figure 5: 500 samples per pixel with an issue with our sampling function.

We concluded that the artefacts were effects of an issue with our implementation of the hemisphere
sampling function. After rewriting this function we rendered the image below. The image still had the
same realistic lighting but the strange shadow artefacts were gone, and we could once again see the
noise associated with path tracing.

Figure 6: 1000 samples per pixel without the sampling issue.

Result
Some renderings from the final version of our program can be seen in the figure below:

Figure 7: the cornell box rendered with our path tracer. From left to right: 2048 samples/pixel, 4096
samples/pixel, 8192 samples/pixel. As the amount of samples increase, the noise becomes less noticeable.

It is worth noting that the image is still relatively noisy, even when using 4000+ samples per pixel.

We can see realistic global illumination across the image, as well as color bleeding in the reflections
of the roof. These effects can be quite hard to simulate with other rendering methods such as
rasterization. Here, we have managed to achieve fairly realistic light transport with a relatively simple
algorithm, albeit at the cost of rendering time.

The image seen below was rendered on a 6-core CPU, with a resolution of 300x300 pixels, 32768
samples per pixel, and a max ray depth of 3. The rendering time for the image was approximately 190
minutes.

Figure 8: Final image of the path tracer.

Discussion

General
Our path tracer manages to produce realistic images, albeit after quite long render times. The basic
version of the algorithm is relatively straightforward to implement, but understanding it fully and
optimising it requires quite a lot of mathematical knowledge from different fields. In general, we are
satisfied with our results, as the images look quite good to our eyes, and we managed to achieve
realistic global illumination.

Method
Our finished product was made with ideal diffuse surfaces with the original intention of extending it
with both ambient and specular properties. The implementation of various components such as
materials and a sophisticated Phong illumination model would have improved the result with even
more realistic results. Intentions of creating translucent materials and perhaps different object shapes
such as spheres or any other objects with various properties, such as refraction, could have made the
endresult more comprehensive and visually satisfying.

An improved sampling model would have led to faster convergence of the monte carlo integration
towards the solution to the rendering equation. Since the convergence of naive monte carlo integration

is proportional to , where is the number of samples per pixel. Using an alternate sampling
method, such as stratified sampling, or the cosine-weighted sampling described in [4], would probably
increase our rate of convergence, meaning that less samples would be required to render images with
relatively little noise.

https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7B1%7D%7B%5Csqrt%7BN%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=N#0

The monte carlo method delivers high quality visualisation of the applied model but, as mentioned
previously, it is a time consuming process which we experienced during the implementation and
testing process. In order to optimise this, [6] suggests implementing various filtering methods to
reduce the noise the monte carlo method integration produces, in order to minimise or at least reduce
the time it takes to render. These filtering methods could definitely have contributed to our project in
order to increase the rendering speed. Because of the time frame this project had, we did not prioritise
this as implementation but rather focused on the visual part of the rendering instead of the speed it
required.

During the project we documented our progress on this blog: https://dh2323path.blogspot.com/, where
we discussed some aspects of our project more in-depth.

Perception studies
When it comes to rendering methods such as path tracing, the most natural perceptual study to
conduct is, in our view, finding the point of diminishing returns; i.e trying to find a “threshold” for
amount of sample relative to resolution where perceived improvements in the image start to drop off.
This might not be the easiest research to conduct, as it might be hard to quantify what exactly is meant
by improvements, but the results could be very valuable to the graphics research community.
Knowing what amount of effort is required for “good enough” can potentially remove hours of
unnecessary rendering, while also reducing power costs and consumption.

If we were to perform a perception study, we would gather enough participants for statistical
relevance, have them look at various images rendered using path tracing. These images would be
rendered using different amounts of samples per pixel, along with different levels of depth for each
ray. The order of the images would be randomized so that the participants would not notice a pattern
in the change in quality. We would create a survey which allows the participants to rate each image on
a 7-point likert scale in order to gain qualitative data. The data could then be analyzed to find the
lowest amount of samples where the rating does not significantly change after an increase in samples
per pixel.

Project members contribution
Hannes worked on implementing the new light source in the scene, attempting to create new materials
for various objects in the scene (which was eventually skipped because of other project priorities) and
assisting with the implementation of the path tracer we used.

Mattias worked on implementing the pseudocode and merging it with the existing code from the
previous lab. He also worked on general program structure and rendered many of the images with
higher sample rates per pixel.

Fredrik worked on the monte carlo sampling functions, implemented the möller-trumbore algorithm,
and multithreaded rendering.

All the group members contributed during the project sessions we had but also with the blog entries
and this project report.

https://dh2323path.blogspot.com/

References
[1] Glassner, A. S. (Ed.). (1989). An introduction to ray tracing. Elsevier.

[2] Kajiya, J. T. (1986). "The rendering equation". Proceedings of the 13th annual conference on
Computer graphics and interactive techniques. ACM

[3] "Global Illumination and Path Tracing (Global Illumination and Path Tracing: a Practical
Implementation)", Scratchapixel.com, 2009-2016. [Online] Available at:
https://www.scratchapixel.com/lessons/3d-basic-rendering/global-illumination-path-tracing/global-illu
mination-path-tracing-practical-implementation. Accessed: 19- May- 2020.

[4] M. Pharr, W. Jakob and G. Humphreys, "2D Sampling with Multidimensional Transformations",
Pbr-book.org, 2018. [Online]. Available at:
http://www.pbr-book.org/3ed-2018/Monte_Carlo_Integration/2D_Sampling_with_Multidimensional_
Transformations.html. Accessed: 19- May- 2020.

[5] Tomas Möller & Ben Trumbore (1997) Fast, Minimum Storage Ray-Triangle Intersection, Journal
of Graphics Tools, 2:1, 21-28, DOI: 10.1080/10867651.1997.10487468.

[6] Suykens, Frank, & Willems, Yves. (2000). Adaptive Filtering for Progressive Monte Carlo Image
Rendering. Proceedings of the 8th International Conference in Central Europe on Computer Graphics,
Visualization and Interactive Digital Media '2000, 220-227.

https://www.scratchapixel.com/lessons/3d-basic-rendering/global-illumination-path-tracing/global-illumination-path-tracing-practical-implementation
https://www.scratchapixel.com/lessons/3d-basic-rendering/global-illumination-path-tracing/global-illumination-path-tracing-practical-implementation
http://www.pbr-book.org/3ed-2018/Monte_Carlo_Integration/2D_Sampling_with_Multidimensional_Transformations.html
http://www.pbr-book.org/3ed-2018/Monte_Carlo_Integration/2D_Sampling_with_Multidimensional_Transformations.html
https://doi.org/10.1080/10867651.1997.10487468
https://doi.org/10.1080/10867651.1997.10487468

